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The correlation coefficient r of the pair EH 2, GH 2, 

r = ((Ie .I  2 -  I e.l=)(I O.I 2 -  Io.12)>. 

×((IE.I=-IE.12)5~'/2<IC.12-10,.,I=)5;_, '/2 (25) 
2 is shown to be equal to c~/a200~02. Under the assump- 

tion that the atomic content of the derivative equals 
the atomic content of the native protein (p) plus the 
heavy-atom content (H) ,  

r = l / ( l + Z Z ~ / E z 2 , , )  

= 1/[1 +(diffraction ratio):/2]. (26) 

2.5. Phase accessibility 

As is the case of the traditional three-phase 
invariant, although probability distributions can be 
calculated for the whole family of invariants (at a 
given resolution) only a subset of these invariants can 
be reliably estimated. In the present case, however, 
this subset consists largely of invariants whose phases 
are associated with normalized structure factors for 
which large differences between the native and deriva- 
tive diffraction intensities are observed. Consequently 
only a subset of the structure factors can be reliably 
phased. Unfortunately, this subset, in some cases, 
may not coincide with that needed to calculate an 
interpretable density map. It is hoped that, in those 
instances, the phase set may be extended through the 
use of quartet invariants, standard phase extension 
techniques or density modification procedures. 

3. Concluding remarks 
In recent years, a formal mathematical integration of 
the techniques of direct methods and isomorphous 
replacement has been undertaken (Hauptman, 1982; 
Fortier, Weeks & Hauptman, 1984). The amount of 

information contained in the probability distributions 
is extensive, although often hidden behind the mathe- 
matical complexity of the formulae. As we have 
shown, it is relatively easy to translate the distribu- 
tions into the usual experimental parameters. 
Through such an exercise, a better understanding of 
the nature and scope of the distributions is attained. 
Conversely, the mathematical formulae yield a better 
understanding of the experiment, and indicate ways 
to improve and gauge the experiment. The exact role 
of direct methods in macromolecular structure 
determination cannot be predicted at this point. As 
has been the case with the traditional direct methods, 
several years of experience in the application of these 
methods will probably be needed before an accurate 
evaluation can be made. With the extensive theoreti- 
cal base now at hand, and the extremely promising 
results obtained to date, we are now in a position to 
address many of the unanswered questions, prin- 
cipally pertaining to the application of the methods 
to real diffraction data. 
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Abstract 

Theoretical expressions for the measurability of 
Bijvoet differences have been derived for triclinic, 
monoclinic and orthorhombic crystals containing p 

* Contribution No. 641. 

(= 1 or 2) anomalous scatterers and many normal 
scatterers per asymmetric unit. Results for the many- 
atom cases (i.e. P= M N  and MC cases) in space 
group P I are also obtained. The theory takes into 
consideration the effect of data truncation due to 
unobserved reflections. The measurability values for 
the various cases are given in the form of compact 
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tables as functions of the relevant parameters k and 
0-2. The theoretical results are also used to discuss 
briefly the following aspects. (i) The effect of k and 
0 -2 on the measurability. (ii) Measurability to be 
expected in the heavy-atom derivatives of proteins 
with Cu K a  radiation. (iii) A comparison of the 
measurabilities in Sm derivatives of a protein for Cu 
K a  and for a wavelength (A = 1.8448~) at which 
the anomalous scattering effect has been observed to 
be the largest. It is also found that in the case of the 
heavy-atom derivatives of proteins measurability is 
strongly influenced by variation in 02. 

1. Introduction 

It is well known that X-ray anomalous scattering (AS, 
hereafter) provides a powerful method of tackling 
the phase problem in non-centrosymmetric crystals 
containing suitable heavy atoms (Ramachandran & 
Raman, 1956; Peerdeman & Bijvoet, 1956). The 
power of the AS method for determining complex 
structures like proteins has been pointed out by 
Ramachandran & Parthasarathy (1965). The success- 
ful structure determination of the macromolecule 
Flavodoxin (MW 16 000) by the AS method is a good 
example for the power of this method (see Waten- 
paugh, Sieker & Jensen, 1975). The advent of syn- 
chrotron radiation as a source of radiation for diffrac- 
tion work in recent years has renewed our interest in 
the AS method of determining structures of proteins 
as well as molecules of moderate complexity contain- 
ing hundreds of atoms. The success of the AS method 
of structure determination strongly depends on the 
measurability of Bijvoet differences (i.e. on the possi- 
bility of measuring fairly accurately the Bijvoet differ- 
ences of a large percentage of reflections). Problems 
related to the measurability of Bijvoet differences* 
such as the optimum conditions, the effect of the 
number of anomalous scatterers in the unit cell of a 
triclinic crystal, the effect of space-group symmetry 
etc. have been studied by making use of the probabil- 
ity distributions of the normalized Bijvoet difference 
(BD, hereafter) variables x and A and the modified 
Bijvoet ratio (BR, hereafter) ~ [see equations (6)-(9) 
for a definition of these variables and see 
Parthasarathy (1982) for the latest review]. In these 
papers it has been tacitly assumed that the intensities 
of all the theoretically possible reflections within a 
given (sin 0/A) range could be measured. Numerical 
values for the measurability have so far been obtained 
only for triclinic crystals containing one or m a n y t  

* In this paper, for brevity, we shall use the term measurability 
to stand for the measurability of Bijvoet differences of a crystal. 

t When there are many anomalous scatterers in the unit cell of 
a crystal of space group P l, these atoms could take up either a 
centrosymmetric or a non-centrosymmetric configuration. These 
two situations will be designated as P = MC and P = M N  cases, 
respectively. 

anomalous scatterers in the unit cell (Parthasarathy 
& Ponnuswamy, 1981a) and these values are, 
however, approximate since they were obtained from 
a theoretical treatment of the modified BR fi rather 
than the BR X.$ Further, the theoretical values for 
the measurability are not available in the literature 
for space groups of higher symmetry. In this paper 
we shall therefore obtain theoretical values of the 
measurability for crystals of the triclinic, monoclinic 
and orthorhombic space groups containing one or 
two anomalous scatterers per asymmetric unit. We 
shall also derive results for the many-atom cases (i.e. 
M N  and M C  cases) of space group P1. In the present 
paper the effect of data truncation arising due to 
non-observability of extremely weak reflections is also 
taken into account. 

The notation used and the preliminary results 
required in this paper are given in § 2. A quantitative 
definition of the measurability is given in § 3. Theo- 
retical expressions for the measurability for the 
various cases are derived in § 4. § 5 contains a brief 
discussion of the results obtained. Test of the theoreti- 
cal results is considered in § 6. 

2. Notation and preliminary results 

Consider a non-centrosymmetric crystal containing 
N atoms in the unit cell. Let P of these be anomalous 
scatterers of the same type and Q (= N - P) be nor- 
mal scatterers of similar scattering power (e.g. C, N 
and O). Let s be the number of equivalent general 
positions in the unit cell. Let n (= N / s ) ,  p (= P / s )  
and q (= Q / s )  be the number of N, P and Q atoms 
per asymmetric unit. The structure-factor equation 
for reflection H can be written as (see Fig. 1) 

FN(H) : F~,(H) + Fo(H ) + F~,(H) 

= F ~ ( H )  + F~,(H), (1) 

where 

F~v(H) = F~,(H) + FQ(H ). (2) 

BD AI and the mean intensity f of the Bijvoet pair 
H ' (=  hkl) and 171 (= hk l )  can be written as (Srinivasan 
& Parthasarathy, 1976) 

IAtl=alf'~llF';,llsin 0l (3) 

f=lF%12+l ~'12 (4) I P I  , 

where 

O = a 'N(H) - a 'p(H). (5) 

SA recent theoretical calculation of (X) for crystals of space 
group PI has shown that the value of (X), for given k and tr 2, is 
sigrvificantly lower than the value of (8) for the corresponding 
situation particularly under pronounced AS effect (Baskaran, 
Parthasarathy & Velmurugan, 1982). For further details see § 5.1. 
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The BR variables X and 8 and the BD variables x 
and A are defined by (Srinivasan and Pa~thasarathy, 
1976) 

X=laII/f=41F%IIF';, sin 01 
IF~I2 +IF~;12 (6) 

a = la t l / IF ' , , , i2=41F' ; . l ls in  ol/IF',,;I ( 7 )  

lazl 
x - 4 [ ( I F o I ~ ) ( I F ~ ,  2)1,/2 (8) 

a --la/I/<lf 12>. (9) 

Equation (7) is obtained from (6) by neglecting F~, 2 
in the denominator of (6) in comparison with I F~  2. 
We shall denote a particular value of X by X0. 

The normalized intensities and normalized struc- 
ture factor magnitudes of the inverse reflections H 
and 171 are defined to be 

z(H) = [ y ( H ) ]  2 = [F,,;(H)[2/(f), 
(lO) 

z (171) = [ y (171 ) ]  2 = I F,,; (FI)I2/([), 
where [see (4)] 

([) = <IF',,,[ 2) +<[F~.12) .  (l l) 

Let Zmm be the minimum of the values z(H) and z(l~I) 
and Ymin be that of y(H) and y(I?-I). Let y, and z, 
denote the threshold values of the normalized struc- 
ture factor magnitude and that of the normalized 
intensity, respectively. It is evident that 

2 
Zmin =Ymin  (12) 

and 

z,=y2,. (13) 

//%¢' . 

k 

/ 

0I R 
Fig. I. The relationship between the various components  of 

the structure factors of the inverse reflections H and 171 in the 
presence of anomalous scattering. 

For a given crystal, the measurability depends on the 
parameters k and o-~ which are defined by 

k u o = f p / ( f  p + f'p) (14) 

and* 

= < IF 'Z>/  (IF' I2). (15) 

Here f o  is the high-frequency limit of the scattering 
factor and f~, and f~, are the real and imaginary 
dispersion corrections. The normalized structure fac- 
tor magnitudes Yo and y p t  a r e  

y(? = [[Fo[2/ (]Fo]2)] 1/2, 
(16) yp=[  F'p[2/( F'p 2)]1/2. 

Let ~b(H) be the angle defined by 

~b(H) = ao (H  ) - a ~(H). (17) 

It follows that 

~b(I~l) = -~b(H). (18) 

In crystals with a single species of anomalous scatterer 
we have:]: (Srinivasan & Parthasarathy, 1976) 

[F'~ I = k[F'p[ (19) 

]F~v[ sin 0 = ]Fo] sin qJ. (20) 

Foster & Hargreaves (1963a, b) have shown that the 
triclinic, monoclinic and orthorhombic space groups 
(Fddd and Fdd2 being the exceptions) can be 
classified into seven categories based on the 
trigonometric factors of the geometrical structure fac- 
tor. Among these, the categories 1, 3, 5 and 6 corre- 
spond to the non-centrosymmetric case and hence 
these alone are of interest in our present study, yp 
for these four space-group categories can be written 
as [see (9) of Parthasarathy & Ponnuswamy, 1976] 

yp= Ep/(ep)  '/2, (21) 
I I where e is l, ½, a and a for the categories l, 3, 5 and 

6, respectively, and Ep is given by ¶ 

Ep = s~p, + _ r/w (22) 
j = l  j = l  

Here scpj and r/pj are the trigonometric parts (excluding 
the symmetry number) of the structure factor 
expression listed in International Tables for X-ray 
Crystallography (1969). 

* We shall denote <IFol2)/<IF'~I 2> by g2. From (2) it follows that 
~ + ~ = I. 

t Though this should be denoted by y~,, we shall denote it by 
yp for convenience. Since IF~(H)I = IF~(fi)l, the explicit use of 
the indices H and 171 is superfluous when dealing with these magni- 
tudes. We shall therefore denote these by [F~, I. For similar reasons 
we shall denote [F~(H)[ and [ F ~  (171){ by [F~I , IFo(H) I and I Fo(ITI)I 
by IFQI and [F~,(H)] and IF~(171)[ by IF~I. 

~: Hereafter, for convenience we shall denote ~(H) by ~. 
¶ The subscripts pj stand for the contribution arising from atom 

j of the P type (i.e. anomalous scatterer) in the asymmetric unit. 
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3. Definition of the measurability of BDs of a crystal 

A BR which is not too small (say X - 0 . 1 )  can be 
easily measured fairly accurately provided the 
intensity of the reflection H and that of the inverse 
reflection 171 are both above the background level. 
Measurability of BDs of a crystal can therefore be 
quantitatively defined as the fractional number of 
reflections which satisfy the following two conditions 
simultaneously: 

(i) X -  X0 (=0.1,  say) 

and 

(ii) Zmi n ~ Z t 

[equivalently, Ymin-->y,; see (12) and (13)]. Using the 
set-theoretic concept of intersection (denoted by the 
symbol n )  the simultaneous satisfaction of conditions 
(i) and (ii) can be written as [(X -> Xo) ~ (Ymin>--Y,)]. 
For convenience we shall denote the fractional num- 
ber of reflections satisfying these two conditions by 
the symbol M(Xo, y,). Using the probability concept 
we can therefore write 

M(Xo ,  y , )=Pr[ (X>-Xo)~(Ymia>-y , ) ] .  (23) 

It is thus seen that the measurability of BDs for a 
given crystallographic situation can be obtained by 
evaluating the probability function on the right-hand 
side of (23). We shall presently consider this aspect. 

4. Derivation of the theoretical expression 
for M(Xo,  y,) 

4.1. Results for  cases p =  1 and 2 in triclinic, 
monoclinic and orthorhombic space groups 

From (5) we obtain (see Fig. 1) 

IF'~l==lF%l=+lfol=+2lf'~llFQlcos¢,. (24) 

Making use of (19) and (20) in the numerator of (6) 
and (19) and (24) in the denominator of (6), we obtain 

x =4klF',,llFollsin OI 
x[(1 + k2)lF%l = +lFol = +2lF'~llFol cos O]-'. 

(25) 

In terms of the normalized variables Ye and Yo [see 
(16)] we can rewrite (25) as 

X = 4kohtr2ypyolsin O[ 

x[(1 +k2)o'2y 2 +  2 2 o'2y Q + 2trlcr2ypy Q COS ~]-I. 

(26) 

Substituting for Ye from (21) we can rewrite (26) as 

X = C, Eeyo[sin (2~rqJo)l 
2 2 

x [C=E2p + cr=y 0 + C3Epy 0 cos (2rr6o)] -I, 
(27) 

where O0 is defined by 

0o= 0/27r (28) 

and CI, C2 and Ca are defined to be 

C~ = 4ktrl tr2/ ( ep )1/2, 

C2=(1 +k2)o'~/(ep), 

Ca = 2trltr2/(ep) I/2. (29) 

From Fig. 1 it is seen that 

[FN(H) 2= F ~ 2 +  F~2 

-2lF'~llF'~lcos(2+O ). (30) 

Making use of (24) in the first term on the right hand 
side of (30) and then using (19), (20) and (28), we 
can rewrite (30) as 

[FN(H)[2 = (1 + k2)lF%[ 2 +lFo[ 2 

+ 2 F'~IIF o (cos 2zr0o + k sin 27r0o). 
(31) 

In view of (15) and (19) we obtain from ( l l )  

( [ ) =  (1 + k2tr2)(lF~v[2 ). (32) 

From (31) and (32) we obtain z(H) to be [see (10)] 

z(H) = [(1 + k2)lF~[ 2 + [ F o f  

+ 21F~,[ [FQl(cos 2¢r0o + k sin 27r0o)] 

×[(1 + k~,r,2)(lF%12)]-'. (33) 

Following the arguments used for deriving (27) from 
(25) we can rewrite (33) as 

z ( n ) = ( C J e p ) E ~  +Csy~  +[C6/(ep)WE]Eeyo 

x (cos 27r0o + k sin 2rr0o), (34) 

where 

C4 = ( 1 + k2)0"2/(1 + k 2¢2), 

C5 = or2/( 1 + k 2cr2), 

(76 = 2cr.cr2/(l + k2o'2). (35) 

From (34) we can readily obtain z(171) to be 

z(f-l) = ( Cal ep ) E2p +C5y20 +[ C61( ep ) '/2]Epyo 

x (cos 2Zr0o - k sin 2Zr0o) (36) 

where we have used (18). 
In the rest of this section we shall derive the theo- 

retical expression for M(Xo ,  y,) for the space-group 
category 5. The results for the other three categories 
can be readily obtained by following similar argu- 
ments. 

For category 5 Ep is a function of 0i, ~bi, 0~, i-- 1 
to p (for a definition of these see Foster & Hargreaves, 
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1963a). 0i, &i and Oi (i = I to p) are mutually indepen- 
dent random variables uniformly distributed in the 
interval 0 to 2zr. Let 0'i, ~b'i and d/'~ (i = 1 to p) be 
defined by 

0~= 0,/2zr, O~= ~ , / 2 m  d/~= d/,/27r. (37) 

It follows that the random variables 0'~, 4/i and d/~, 
i =  1 to p, are mutually independent and uniformly 
distributed in the interval 0 to 1. Since Ep is a function 
of 0~, 4~ and d/~ (i = 1 to p) it follows that Ep is a1'9 
a function of 0'~, (bl and d/'i (i = 1 to p) [see (37)]. 

That is, 

Ep = Ep( O:, d~:, d / ; , . . . ,  O'p, d)'p, dip). (38) 
The joint probability density function of the random 
variables* Yo, d/k, 0'~, ~b'l, d / ; , . . . ,  0p, ~bp, d/; is known 
to be (Parthasarathy & Ponnuswamy, 1981b) 

P ( Y o ,  . . . , d / ' ~ ) =  2 Y o  exp (-y~), 
(39) 

0-<yo <oc , 0<- d/~, 0 '~ , . . . ,  ~bp < 1. 

From (27), (34) and (36) [see also (38)] it is clear that 

X = X ( y o , . . . ,  d/p) (40) 
and [see (10)] 

Ym~,, = Ymin(Yo, " " " , d/'p)" (41) 

In the (3p +2)-dimensional  (Yo, • • •, 0 ; )  space let the 
domain satisfying the conditions X -> Xo and Y,,i~ --- Y, 
simultaneously be denoted by D. In view of (40) and 
(41), we obtain from (39) 

P r [ ( X  - Xo) ~ (Ymin----- y,)] 

= ~ "b" ~ 2y° exp ( - y ~ )  d y o . . ,  dd/p, (42) 

where the (3p +2)- fo ld  integration is over the region 
D of the ( Y o . . . ,  d/p) space. The expression on the 
right hand side of (42) is too difficult to evaluate in 
closed form but may be evaluated by the Monte Carlo 
method of integration in a digital computer. 

It may be noted that Ep for category 6 is also a 
function of the 3p variables ( 0 ' . , . . . ,  d/p). For category 
3, Ep is a function of the 2p variables 

! (0'~, 49'~,..., Op, rb'p). For category 1, Ep is a function 
of the p variables ( 0 '~ ,0 ; , . . . , 0p ) .  The explicit 
expressions of El, for the categories 1, 3, 5 and 6 are 
available in Table 1 of Parthasarathy & Ponnuswamy 
(1976). Expression (42) is valid for all the categories. 
It is, however, necessary to note that the multiple 
integral involves (p + 2), (2p + 2), (3p + 2) and (3p +2) 
variables for the space-group categories 1, 3, 5 and 6, 
respectively. 

use of the variables Yo, YP and 0 instead of 
(Yo, . - - ,  0p)- Since Yo YP and d/ are independent 
random variables (Parthasarathy & Srinivasan, 1964), 

their joint density function will be the product o( 
t h e i r  m a r g i n a l  d e n s i t i e s .  T h a t  is, 

P(yQ, yp, ~b) = P ( y o ) P ( y p ) e ( O ) .  (43)  

P(Yo) is given by the acentric Wilson distribution 
and d/is uniformly distributed in the interval 0 to 2zr 
(Parthasarathy & Srinivasan, 1964). P(yp) for the 
cases P = M N  and P = M C  are the acentric and 
centric Wilson distributions respectively (Wilson, 
1949). We thus have 

2 
P ( y o y p ,  d / ) = - - y p y o e x p ( - y 2 o - y 2 p )  for P =  M N  

71" 

21/2 
- rr3/2 Yo exp ( - y 2  o -  y2p/2) 

for P - -  MC, 

0 <- Yo, YP < oG 0 -< d/<- 2rr. (44) 

Equation (26) is valid for the present cases. From 
(33) we can readily show that [see also (16)] 

z(H) = C4y 2 + Csy~ + C6ypyo(cos d~ + k sin d/). 
(45) 

From (45) we can readily obtain [see (18)] 

z ( f t )  = C4y2p + C5y2o + C6ypyo(cos d~ - k sin d/). 
(46) 

From (26) it is seen that X is a function of Yo, YP 
and 0. From (45) and (46) and the definition of Ym~n 
it is seen that 

Ymin = Ymin(YP, Yo  d/). (47) 

By following the arguments used for deriving (42) we 
can show that for the present cases 

P r [ ( X  -> g o )  ~ (Ymin ~ Yt)] 

= ~ P ( y o ,  yp, d / )dyodypdd / ,  (48) 
D 

where D is now the domain in the three-dimensional 
(Yo, YP, O) space satisfying the conditions X -> Xo and 
Ymin -> Y, simultaneously. The theoretical expressions 
for the cases P = M N  and P = M C  are to be obtained 
by substituting the appropriate expression for 
P(Yo, YP, d/) from (44) in (48). These integrals are too 
complicated to be evaluated in closed form and were 
therefore evaluated by the Monte Carlo method. 

4.2. Results for  the many-atom cases in space group P 1 

In this subsection we shall take the space group of 
the crystal to be P1. Here it is convenient to make 

p 
* For brevity we shall denote (Yo ~b6, 0'1, ~b'~, ~b~ . . . . .  0;,, ~bp, Op) 

by (Yo, . . . .  ~bp). 

5. Discussion of the theoretical results 

M(Xo ,  y,), for given X0 and y,, is a function of k 
and cr 2. In actual crystals the truncation limit y, 
is in the neighbourhood of 0.2 (Ponnuswamy & 
Parthasarathy, 1977). The BD data of reflections for 
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Table  1. Values of M(O.1, 0.3) (in %) as a function of k and t~ for crystals belonging to the space group 

k 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

0.18 

0.20 

0.22 

0.24 

0.26 

0.28 

0.30 

0.35 

0-40 

0.45 

0.50 

0.55 

0.60 

categories 1, 3, 5 and 6: p = 1 

5 10 1.5 20 25 30 40 50 60 70 ~SO 90 

0 4 9 12 15 18 21 21 19 16 II 3 
I 5 8 I0 12 14 15 16 14 12 "8 3 
2 5 8 10 12 13 15 15 15 13 10 4 
2 5 7 9 10 10 12 12 11 9 7 3 
6 15 22 28 32 34 36 36 34 30 22 10 
7 13 18 22 24 26 27 27 26 26 18 10 
7 13 18 21 24 26 28 28 27 24 20 12 
6 12 15 18 20 22 22 22 20 18 15 9 

13 26 35 40 43 45 46 46 43 40 34 19 
13 22 28 32 34 35 37 37 36 33 28 17 
12 21 27 31 34 36 38 39 37 35 30 19 
12 19 23 26 28 30 31 31 30 27 23 14 
22 36 45 49 52 53 53 53 51 49 42 38 
19 30 35 35 39 41 43 44 45 43 41 36 
18 28 36 39 42 44 46 46 45 43 38 27 
17 25 29 32 34 36 38 38 37 35 30 21 
30 45 52 55 57 58 58 58 57 55 49 35 
25 36 41 45 47 48 50 51 49 47 42 3 I 
24 36 42 46 48 50 52 52 51 49 45 34 
22 30 34 38 40 42 44 44 43 41 37 27 
37 52 57 60 61 62 62 62 61 60 55 42 
30 41 46 49 51 52 54 54 54 51 47 36 
29 41 47 51 53 54 56 56 56 54 50 39 
26 34 39 42 44 45 48 48 47 45 41 31 
43 57 61 63 64 64 65 64 64 63 59 48 
35 45 50 52 54 55 57 58 57 55 51 41 
34 47 52 55 57 58 59 60 59 57 54 44 
30 38 43 46 48 49 51 52 51 59 45 36 
49 60 64 65 66 67 67 67 66 66 63 52 
39 49 53 55 57 58 60 60 60 58 54 44 
39 50 56 58 60 61 62 62 62 60 57 48 
33 41 46 49 50 52 54 55 53 52 48 39 
53 63 66 67 68 68 69 69 68 68 66 56 
43 51 55 58 59 60 61 62 62 61 57 47 
43 53 58 61 62 63 64 64 64 62 60 5 I 
36 44 48 51 53 54 56 56 55 54 51 42 
57 65 68 69 69 70 70 70 70 70 68 59 
45 54 57 59 60 62 63 64 64 63 60 50 
46 56 60 63 64 65 66 66 66 64 62 54 
39 46 50 53 55 56 58 58 58 56 53 45 
60 67 69 70 70 71 71 71 71 72 70 62 
48 55 59 61 62 63 65 65 65 64 61 52 
49 58 62 64 66 67 68 68 67 66 64 56 
41 48 52 54 56 58 59 59 59 58 54 47 
62 68 70 71 71 72 72 72 73 73 72 65 
50 57 61 62 63 64 66 66 66 66 63 54 
52 60 64 66 67 68 69 69 68 67 65 58 
43 50 53 56 58 59 60 60 61 59 56 49 
64 69 71 72 72 72 73 73 74 74 74 67 
52 59 62 63 65 66 67 67 67 67 64 56 
54 62 65 67 68 69 70 70 69 68 67 60 
44 51 55 57 59 60 61 62 62 60 57 50 
65 70 72 73 73 73 73 74 74 75 75 68 
54 60 63 64 66 67 68 68 69 68 65 58 
56 63 67 68 69 70 70 70 70 69 68 61 
46 53 56 58 60 61 62 63 63 61 59 52 
68 72 74 74 74 74 74 75 76 78 78 72 
57 62 65 67 68 69 70 70 71 70 68 61 
60 66 69 70 71 71 72 72 72 71 69 65 
49 55 58 61 62 63 64 65 64 63 61 54 
71 74 75 75 75 75 75 76 78 79 80 74 
60 64 67 69 69 70 71 72 72 72 69 63 
63 68 70 71 72 73 73 73 72 72 71 67 
52 57 60 62 63 64 65 66 65 65 62 56 
72 75 75 75 75 75 76 77 79 81 81 76 
62 66 68 70 70 71 72 73 74 73 71 64 
65 69 71 72 73 74 74 74 73 73 72 68 
54 59 62 64 64 65 66 66 67 66 64 58 
73 75 76 75 75 76 77 78 80 82 83 78 
64 67 69 71 71 72 73 74 75 74 72 65 
66 70 72 73 74 74 74 74 74 73 73 69 
56 61 63 64 66 67 67 67 68 66 64 58 
74 76 76 76 76 76 77 79 81 83 83 79 
65 68 70 72 72 73 74 75 75 74 72 66 
68 71 73 74 74 75 75 75 74 74 73 70 
57 62 64 66 67 67 67 68 68 67 65 59 
74 76 76 76 76 76 "78 80 82 84 84 80 
66 69 71 72 73 74 75 75 76 75 73 67 
69 72 73 74 75 75 75 75 75 74 73 71 
58 63 64 66 67 68 68 68 69 68 65 59 

Note. o'~ is in %. 
* Numbers in this column denote the space -group  category.  
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Table 2. Values of M(O.1, 0.3) (in %) as a function of k and cr 2 for crystals belonging to the space group 

k 

0.04 
3 

0.06 

0.08 

0-10 

0.12 

0-14 

0.16 

0-18 

0.20 

0'22 

0'24 

0-26 

0-28 

0.30 

0-35 

0.40 

0.45 

0-50 

0.55 

0.60 

categories I, 3, 5 and 6: p---2 

5 10 ! S 20 25 30 40 50 60 70 80 90 

45 78 i10 1122 1133 1155 1155 1144 112 I 108 3 

1 5 7 10 11 13 14 14 14 13 9 5 
2 5 7 9 I1 12 14 14 13 11 9 4 
6 13 18 22 24 25 27 26 25 23 17 9 
6 12 17 21 24 26 27 28 27 24 20 12 
6 13 17 21 23 25 27 28 27 24 20 12 
6 12 17 20 22 24 26 26 25 23 19 I I 

13 22 28 31 34 35 36 36 35 33 27 17 
12 21 27 31 34 35 37 38 37 34 30 20 
12 21 27 31 34 37 38 38 37 35 30 20 
12 21 26 29 32 34 35 36 36 33 28 18 
19 30 35 38 40 42 43 44 43 40 35 24 
18 28 35 39 42 44 46 46 45 42 38 27 
18 28 36 40 42 44 46 46 44 43 37 27 
18 27 33 37 39 41 42 44 42 41 36 26 
25 36 40 4,4 46 47 49 49 49 47 42 30 
24 35 42 46 48 50 52 52 51 48 45 34 
24 35 42 46 48 49 51 52 51 49 44 33 
23 34 39 43 44 46 48 49 49 47 43 33 
31 40 45 48 50 51 53 53 53 51 46 36 
29 41 47 50 52 54 56 57 56 53 49 40 
29 41 47 50 52 54 56 56 55 53 49 39 
28 39 44 47 49 50 52 53 53 52 48 37 
35 44 49 49 53 54 56 56 57 55 51 40 
34 45 51 54 56 58 59 60 59 57 53 44 
34 46 51 54 56 57 58 59 58 57 53 44 
32 43 48 50 52 53 55 57 57 55 52 42 
39 47 52 54 56 57 58 59 59 58 54 44 
38 49 54 57 59 61 62 62 62 60 57 47 
38 49 54 57 59 60 61 61 61 59 56 47 
37 46 51 53 56 57 58 60 59 58 55 45 
42 50 54 57 58 59 61 61 62 60 57 47 
42 52 57 60 61 62 64 64 63 62 59 5 I 
42 52 57 59 61 62 64 64 63 62 59 50 
40 49 54 56 58 59 61 62 62 60 57 48 
44 52  56 58 60 61 62 63 63 62 59 50 
45 55 59 62 63 65 66 65 65 64 62 53 
45 55 59 62 63 64 65 65 65 64 61 53 
43 52 56 59 60 61 63 64 63 61 59 51 
46 54 58 60 61 62 64 65 64 64 61 53 
48 57 61 64 65 66 67 67 67 65 63 56 
49 57 61 63 65 65 66 67 66 65 62 55 
45 54 58 61 62 63 64 65 64 63 60 53 
49 56 59 61 62 64 65 66 66 65 63 54 
50 59 63 66 67 67 68 68 68 67 65 58 
51 58 63 65 66 67 68 68 68 66 64 57 
48 56 60 62 63 65 66 66 66 64 62 54 
51 58 61 62 64 65 67 67 67 66 64 56 
52 61 65 67 68 68 69 69 69 68 66 59 
53 60 64 66 67 68 69 69 69 68 65 60 
50 58 62 63 65 66 67 68 67 66 63 56 
52 59 62 63 65 66 68 68 68 68 65 57 
54 63 67 68 69 69 70 70 70 69 67 6 I 
54 62 66 67 69 69 70 70 70 69 67 6 I 
52 59 63 65 66 67 68 68 68 67 64 58 
56 61 64 66 67 68 70 70 70 70 67 60 
58 66 69 70 71 71 72 72 71 71 69 63 
58 65 68 70 71 72 72 72 72 71 69 63 
55 63 66 67 69 69 70 71 70 69 67 6 I 
58 64 66 67 69 70 71 72 72 72 69 63 
62 69 70 71 72 72 73 73 73 72 71 66 
61 68 70 71 73 73 73 74 73 73 71 65 
58 65 68 69 70 71 71 72 72 70 68 63 
61 65 67 69 70 71 72 73 73 73 71 64 
65 70 72 72 73 73 73 74 73 73 72 67 
64 69 71 73 74 74 74 75 74 74 72 66 
61 67 69 70 72 72 72 73 73 71 69 65 
62 67 69 70 71 72 73 74 74 74 72 65 
67 71 73 73 74 74 74 74 74 74 73 68 
66 70 72 74 74 75 75 75 75 74 73 67 
63 69 71 72 72 73 73 73 73 72 70 66 
64 68 70 71 71 72 74 75 75 74 73 66 
68 72 73 74 74 75 74 74 75 75 74 69 
68 71 74 75 75 75 76 76 75 75 73 69 
65 70 71 72 73 74 74 74 74 72 71 66 
65 69 70 71 72 73 75 75 75 75 73 67 
70 73 74 75 75 75 75 75 75 75 74 70 
69 72 74 75 75 76 77 77 76 75 74 69 
67 71 72 73 74 74 74 74 74 73 71 67 

Note. cr~ is in %. 
* Numbers in this column denote the space-group category. 
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Table 3. Values of  M(O. 1, 0.3) (in % ) as a function 
of  k and ~r~ for many-atom P = M N  and M C  cases 

k 5 10 15 20 25 30 40 50 60 70 80 

0.04 M N  1 4 7 9 I1 13 15 15 15 13 10 
M C  2 4 6 8 9 10 I1 12 12 10 7 

0'06 M N  5 12 17 21 23 25 27 28 28 26 21 
MC 5 10 14 17 18 20 21 22 22 21 17 

0.08 M N  II 21 27 30 33 35 38 38 38 36 31 
MC 10 17 22 24 27 28 30 31 31 29 26 

0.10 M N  17 29 35 39 42 43 45 46 45 44 39 
M C  15 24 28 32 34 35 37 38 38 37 33 

0.12 M N  24 35 41 45 48 49 51 52 51 49 45 
M C  20 29 34 37 39 41 43 44 44 42 39 

0.14 M N  29 41 47 50 53 53 56 56 56 54 50 
M C  25 33 39 41 44 45 47 48 49 47 43 

0"16 M N  34 45 51 54 56 57 59 60 60 58 54 
M C  28 37 42 45 47 48 51 52 53 51 48 

0"18 M N  38 50 54 57 59 60 62 63 63 61 57 
M C  32 41 45 48 50 51 54 55 56 54 51 

0'20 M N  42 53 57 60 62 63 64 65 65 63 60 
M C  34 44 48 51 53 54 56 57 58 56 53 

0"22 M N  45 55 60 62 64 64 66 67 67 65 62 
M C  37 46 50 53 55 56 58 59 60 58 55 

0-24 M N  48 58 61 64 66 66 68 68 68 66 66 
M C  40 48 52 55 57 57 60 61 61 60 57 

0"26 M N  51 60 63 66 67 67 69 69 69 68 65 
M C  42 50 54 57 58 59 61 62 63 61 58 

0.28 M N  53 61 65 67 68 69 70 71 70 69 66 
MC 44 52 56 58 59 61 63 64 64 62 60 

0-30 M N  55 63 66 68 69 70 71 71 71 69 67 
M C  46 53 57 59 61 62 64 65 65 63 60 

0.35 M N  59 66 68 70 71 71 72 72 72 71 69 
M C  49 57 60 62 63 64 66 67 66 65 62 

0.40 M N  62 68 70 72 72 73 73 73 73 72 71 
M C  52 59 62 64 65 66 67 68 67 66 64 

0.45 M N  65 70 72 73 73 74 74 74 74 73 72 
M C  55 61 64 66 67 68 68 69 69 67 66 

0.50 M N  67 71 73 74 74 74 74 74 74 74 72 
M C  57 63 66 67 68 69 69 69 69 68 65 

0.55 M N  68 73 74 74 75 74 74 75 75 74 73 
MC 59 64 67 68 69 69 69 70 70 68 66 

0.60 M N  70 73 75 75 75 75 75 75 75 74 73 
M C  60 66 68 69 70 70 70 70 70 68 66 

N o t e  o "2, is in o/.. 

measurability corresponding to the various cases in 
a simple form. It is relevant to compare the theoretical 
values of the measurability as obtained from the 
distributions of X (i.e. the present theory) and & 9o 

5 The expression for ~5 is obtained from that of X 
4 by neglecting the positive quantity IF~,I 2 in the 

12~ denominator of the expression for X [see (6) and 
2~ (7)]. Therefore it follows that the value of ~5 for any 18 
38 given reflection will always be greater than that of X. 
24 This implies that the theoretical value of the measur- 34 
30 ability as obtained from the probability distribution of 
40 ~5 would always be an overestimated value compared 35 

45 with the true value that would be obtained from the 
39 distribution of X. This overestimation would become 49 

42 more pronounced with increasing value of k (i.e. 52 
45 under large AS effect). A comparison of the values 
54 of the measurability as obtained from the earlier 
47 
57 theory of Parthasarathy & Ponnuswamy (1981a) for 
59 space group P1 with the corresponding values 
58 

5~ obtained from the present theory confirms these 
60 features (see Table 4). 52 
61 
53 
64 
56 
66 
58 
68 
60 
69 
60 
70 
60 
70 
61 

which y(H) and y(I:t) are close to this limit may not 
be very accurate. We shall therefore assume that 
reflections for which y(H) and y(I~I) are greater than 
0.3 would be sufficiently accurate to yield useful BD 
data. A BR whose value is about 0-1 or more could 
be measured fairly accurately. We shall therefore take 
M(0.  l, 0.3) as an index of the measurability of BDs 
of a crystal. Values of M(0.  l, 0.3) have been calcu- 
lated for triclinic, monoclinic and orthorhombic crys- 
tals containing p (=  1 or 2) anomalous scatterers per 
asymmetric unit for different fixed values of k and 

2 o1 by evaluating the appropriate integrals of § 4 by 
the Monte Carlo method (see Demidovich & Maron, 
1973). The results obtained are given in Tables 1 and 
2 for p = l and 2, respectively. The results obtained 
for the many-atom cases (i.e. P = M N  and M C )  of 
space group P1 are given in Table 3. 

5.1. Comparison with earlier results 

In the earlier study the measurability values were 
obtained (for crystals of space group P1) from the 
probability distribution of ~ instead of from that of 
X (Parthasarathy & Ponnuswamy, 1981 a). This was 
done in order to avoid theoretical complications as 
well as to obtain the theoretical expressions for the 

5.2. Remark on relevant values of  tr~ 

Since light-atom structures containing less than 100 
atoms* per asymmetric unit can in principle be deter- 
mined by direct methods, the AS method may not be 
preferred for determining such structures from their 
heavy-atom derivatives. In our discussion we shall 
therefore assume the structures to be sufficiently com- 
plex (say n > 100) and for such structures the AS 
method would be more suited than any other single 

2 method. For complex structures the values of o"1 
2 would not generally be large (trl < 0.5 say). For the 

heavy-atom derivatives of proteins tr~ will often be 
quite smallt  (tr~ < 0.2, say). In our discussion regard- 
ing the measurability we shall therefore confine 
ourselves to the region cr~ < 0"5. 

5.3. Variation of measurability as a function of  k 

The variation of M (0.1,0.3)  as a function of k for 
2 different fixed values of O" 1 is  shown in Fig. 2. These 

curves correspond to the situation where the crystal 
of space-group category 3 contains one anomalous 
scatterer (i.e. p = 1) per asymmetric unit besides the 
other light atoms. For a given cry, as k increases, the 
measurability increases almost linearly and somewhat 
steeply until k is about 0.15 and the rate of increase 
becomes less for values of k up to 0.25 (see Fig. 2). 
For larger values of k the curves become somewhat 
linear with a very small slope. Thus the measurability 

* In our discussion the term 'atoms' is used to refer to the 
non-hydrogen atoms only. 

tFor Sm derivatives of the proteins chicken lysozyme (MW 
14 2 9 7 )  and substi l is in B P N  ( M W  27  4 9 9 )  with o n e  Sm a tom per 
protein m o l e c u l e  the average  va lues  ( correspond ing  to 2 A, data) 
o f  o .2 are 0.  i a n d  0 . 0 5 ,  respect ively .  
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Table 4. Comparison of the measurability of Bijvoet differences (in %) obtained from earlier ( ET) and present 
( PT) theories for a few typical situations 

0.1 0-2 0.3 0 .4  

k ~ P ! M N  M C  P 1 M N  M C  P 1 M N  M C  P 1 M N  M C  

0.1 ET 38 29 24 51 40 32 55 45 37 56 47 39 
PT 36 29 24 49 39 32 53 43 35 53 45 37 

0.2 ET 66 54 45 71 62 53 73 66 57 73 67 59 
PT 63 53 44 67 60 51 68 63 54 69 64 56 

0.3 ET 74 65 55 78 71 62 79 74 66 79 75 67 
PT 70 63 53 73 68 59 73 70 62 73 71 64 

0.4 E T  79 71 62 81 76 68 82 78 71 83 79 73 
PT 74 68 59 75 72 64 75 73 66 75 73 67 

0'5 ET 81 75 67 83 79 72 84 81 75 85 81 76 
PT 75 71 63 75 74 67 76 74 69 77 74 69 

0.6 ET 83 78 70 85 81 75 85 83 77 86 83 78 
PT 76 73 66 76 75 69 76 75 70 78 75 70 

Note. The values against ET were obtained from the probability distribution of & Those against PT are the results of the present theory based on the distribution of X. Note 
that the values against ET are overestimated compared to their corresponding values shown against P'E. 

is a non-linear function of k as expected from the 
expression for X [see (21 )]. It may, however, be noted 
here that, in the earlier theory, the measurability 
turned out to be a linear function of k (for all k) and 
this unwarranted result arose due to an approxima- 
tion (for details of the approximation see § 5.1 ) which 
is not appropriate under a quite pronounced 
anomalous scattering effect. 

5.4. Variation of measurability as a function of o.~ 
2 The variation of M(0.1 ,0 .3)  as a function of o., 

for different fixed values of k is shown in Fig. 3 for 
the situation considered in § 5.3. For a given moderate 
or large value of k (e.g. k = 0.2) the measurability 

2 increases steeply and almost linearly as o., increases 
in the region 0 to 0. l (see Fig. 3). For values of o-21 
in the region 0.1 to 0.25 the rate of this increase 
becomes much less. For o .2 > 0.25 the curves become 
practically flat. Since for the heavy-atom derivatives 
of proteins the values of or 2 are in general small, the 
feature that in the region of small values of o.~ the 

measurability increases steeply with increasing value 
of o.2 is of special interest in protein crystallography. 

5.5. Influence of space-group symmetry on the 
measurability 

It is seen from Tables 1 and 2 that among crystals 
containing one anomalous scatterer per asymmetric 
unit (i.e. p = 1), for given k and o .2 (i.e. for given type 
of heavy atom, wavelength and complexity of asym- 
metric unit), the measurability is a maximum for the 
triclinic category 1 and least for the orthorhombic 
ca, tegory 6. Other conditions being the same, measur- 
ability values for categories 3 and 5 are somewhat 
similar and lie between those for categories 1 and 6. 
In crystals with two heavy atoms per asymmetric unit 
(i.e. p = 2 ;  see Table 2) this feature is present to a 
lesser extent only. 

It may incidentally be noted that, for given k and 
or 2, the measurability is larger for the many-atom case 
P = M N  than for the many-atom case P - -  MC (see 
Table 3). 

80 8o[ 1 0 5  0 ' 6  
OZ. O-Z, 
03 j / / ~ ~ -  o 3 ~ . ~  ~ | 

60 ~ o~ _ ~  

40 40 
0"06 

20 20 

0 ~  
o o 02 o~ o6 o a ~o o o'1 0'2 0'3 o~ o's 06 2 k . oq 

Fig. 2. Variation of the measurability M(0.1,0.3) (in %) as Fig. 3. Variation of the measurability M(0.1,0.3) (in %) as 
a function of k for ditterent fixed values of 0̀ 2 for p = 1 in a function of 0 ̀2 for different fixed values of k for p = 1 in 
category 3. category 3. 
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Table 5. Measurability o f  Bijvoet differences (in %) 
to be expected with Cu Ka and with a radiation of  
A = 1.8448 ~ in macromolecular crystals of  space group 
categories 1, 3, 5 and 6 containing p (= 1 or 2) Sm 
atoms and q (= 500, 1000 , . . . ,  3000) normal scatterers 

per asymmetric unit 

q 

500 

1000 

1500 

2000 

2500 

3000 

Resu l t s  fo r  C u  Ka 
S p a c e - g r o u p  

c a t e g o r y  
p tr~ i 3 5 6 

20.3 73 64 67 56 
2 33"7 65 70 67 63 

l l ' 3  70 60 63 52 
2 20"3 63 67 66 64 

7-9 68 57 59 48 
2 14.6 61 64 64 61 
I 6"0 66 53 56 45 
2 l l . 3  60 62 62 58 
I 4.9 64 52 54 43 
2 9.3 57 59 60 55 

4.1 61 49 51 41 
2 7.9 56 58 59 54 

Resu l t s  fo r  A = 1.8448/~, 
S p a c e - g r o u p  

c a t e g o r y  
c r ~ l  3 5 6  

12'1 77 73 76 69 
21"5 76 79 75 72 

6"4 77 71 74 65 
12"1 75 77 76 73 
4"4 77 69 73 62 
8"4 74 75 75 72 
3"3 77 68 71 61 
6"4 72 74 74 71 
2"7 76 67 71 60 
5'2 71 73 73 70 
2.2 76 66 69 59 
4.4 69 72 73 69 

For Sm, (k) = 0.270 and 0-859 for 2/~ data with Cu Ka and for the radiation 
with A = 1.8448 ,~, respectively. ~r~ values are in %. 

5.6. Measurability in Sm derivatives of  proteins with 
Cu Ka radiation 

Since Sm exhibits a large anomalous scattering 
effect for Cu Ka, in this section we shall discuss the 
measurability of BDs to be expected in Sm derivatives 
of proteins of different complexity. We shall consider 
situations where the following typical conditions are 
satisfied: (i) the number of normal scatterers per 
asymmetric unit is a few thousands (i.e. q -- 500, 1000, 
1500 , . . . ,  3000); (ii) the composition of the q atoms 
is such that 80% of these are carbons, 10% are 
nitrogens and 10% are oxygens; (iii) the crystals are 
such that data corresponding to 2 A resolution can 
be collected. The values of M(0.1 ,0 .3)  for a few 
.typical macromolecular situations are given in Table 
5. The average values of o .2 and k (for Cu Ka)  corre- 
sponding to 2 A resolution data are also given. From 
this table it is seen that a measurability of more than 
40% could be achieved in macromolecular crystals 
containing even a few thousand atoms per asymmetric 
unit by a judicious choice of the wavelength, type of 
heavy atom and their number (i.e. one or more) per 
asymmetric unit. 

5.7. Comparison of  measurabilities in Sm derivatives 
of  a protein for Cu Ka and for radiation with A = 
1.8448/~, 

Recently, Templeton, Templeton, Phizackerley & 
Hodgson (1982) have experimentally measured the 
values o f f '  and f "  for Sm at various wavelengths and 
found f "  to be the largest at A = 1-8448/~. For Sm 
the average values of k (for 2 ,~ resolution data) are 
0.27 and 0.859 for Cu Ka and for A = 1.8448 ~ ,  
respectively. Thus the value of k of Sm for A = 

1"8448 A is more than three times its value for Cu Ka. 
It would hence be interesting to compare the values 
of the measurability for these two radiations in a few 
typical cases of Sm derivatives of molecules contain- 
ing a few thousand atoms in the asymmetric unit. The 
relevant results are given in Table 5. It is seen that 
for a derivative with one Sm and 2000 other atoms 
per molecule crystallizing in a space group of category 
3 the measurability values are 53 and 68% for Cu Ka 
and for A = 1.8448 ~ ,  respectively. Thus, in spite of 
the threefold increase in the value of k for A-- 
1.8448 ~ (relative to the value of k for Cu Ka)  the 
measurability has increased only by 28%. Similar 
results are obtained for other values of p and in other 
space group categories (see Table 3). The reasons for 
the lack of spectacular improvement in the measur- 
ability for A = 1.8448 ~ are the following: (i) the non- 
linear functional dependence of the measurability on 
k (see § 5.3) and (ii) the reduction in the value of o .2 
by nearly 50% relative to its value for Cu Ka. 

Since the measurability is a non-linear function of 
k with decreasing slope and since an increase in the 
value of k is simultaneously accompanied by a 
decrease in the value of o'12 as one approaches an 
absorption edge of a heavy atom owing to physical 
reasons and since in the region of small o.~ the 
measurability is sensitive with respect to changes in 
o.~ (see § 5.4) it appears that we may not be able to 
obtain spectacular increase in measurability by 
approaching the absorption edge very closely.* 
However, in macromolecules containing more than 
a few thousand atoms, in order to tackle the phase 
problem as effectively as possible, it may become 
necessary to increase the measurability as much as 
one can and in order to do this it may then be 
advantageous to use a radiation whose wavelength is 
closer to the absorption edge of the heavy atom than 
Cu Ka. 

6. Test of theoretical results 

The theoretical results obtained in this paper have 
been tested in the case of a few hypothetical three- 
dimensional structures. The details of the structures 
chosen are given in Table 6. Structure (1) was 
obtained from that of L-N-acetylhistidine monohy- 
drate (Kistenmacher, Hunt & Marsh, 1972) by taking 
one of the atoms in the unit cell to be chlorine and 
the remaining atoms to be carbons. Structure (2) was 
obtained by replacing Cl of structure ( 1 ) with a cobalt 
atom. Structure (3) was derived from that of tert- 
butyloxycarbonyl-L-alanyl- L-proline monohydrate 

* (1) As  o n e  a p p r o a c h e s  an  a b s o r p t i o n  e d g e  o f  an  a t o m  f '  
d e c r e a s e s  (i.e. If'l i n c r e a s e s )  so tha t  the  to ta l  rea l  pa r t  f o + f ,  
d e c r e a s e s .  Th i s  causes  or 2 to  d e c r e a s e  [see (15)].  Th i s  r e d u c t i o n  in 
or 2 is i n e v i t a b l e  s ince  it a r i s e s  d u e  to  p h y s i c a l  r e a s o n s .  (2) In  the  

2 r e g i o n  o f  ve ry  s m a l l  v a l u e s  o f  tr~ (i.e. cr 2 < 0" l )  the  v a r i a t i o n  in tr I 
a t tec t s  m e a s u r a b i l i t y  qu i t e  s i gn i f i can t ly  (§§ 5.2 a n d  5.4). 
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(Ponnuswamy, 1979) by taking one of the atoms in 
the asymmetric unit to be a CI and the remaining 
atoms to be carbons. Structure (4) was derived from 
that of (3) by replacing the C1 with a Co atom. 

In these structures each atom was assumed to have 
the same isotropic temperature factor, namely B = 
2"5 A 2. Values of X, k and o'~ were computed for 
each independent noncentrosymmetric reflection for 
the data in the range 1/ami,<-sinO/h<-O.6A -1, 
where ami, is the minimum cell dimension of the 
crystal (Wilson, 1949). The mean values of k and o-~ 
obtained for the various structures are given in Table 
6. The variation of M(X, 0.3) as a function of the 
Bijvoet ratio X has been computed for each structure 
from the calculated values of X for the various reflec- 
tions. This variation is shown in Fig. 4 for the four 
structures by crosses (which are taken to represent 
the experimental points). The theoretical curve of 
M(X, 0.3) vs X was obtained in each case by making 
use of the appropriate average values (k) and (o-~) 
for the respective data. The theoretical curves are 
shown by solid lines. It is seen that there is good 
agreement between theory and experiment in all the 
cases. 
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Fig. 4. Verification of theoretical results: variation of  M(X0, 0.3) 
(denoted by M) as a function of  X o for the structures 1 to 4 of 
Table 6. In each case the solid line denotes the theoretical curve 
and crosses denote the experimental data. 

Table 6. Details of the structure taken for testing the 
theoretical results 

Space- 
group 

Space category Asymmetric 
No. group number p unit (k) (tr 2) 

I Pl l l CIC29 0"087 0"396 
2 PI 1 l COC29 0"344 0"533 
3 P2t2121 5 I CIC2o 0"088 0"491 
4 P212;21 5 I CoC2o 0"349 0"623 
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